Classification of Vehicle Classes at Toll Gates Using YOLOv9 and Resnet50 - Dalam bentuk pengganti sidang - Artikel Jurnal

ABDUL AZIZ FEBRIYANSAH

Informasi Dasar

113 kali
25.04.447
000
Karya Ilmiah - Skripsi (S1) - Reference

Indonesia's current toll road payment system uses Automatic Vehicle Classification (AVC) technology, which relies on various sensors such as induction sensors, LiDAR, and radar. This approach incurs high operational costs. For this reason, more efficiency is required. Toll roads are vital infrastructure supporting vehicle mobility in Indonesia, and operational efficiency directly impacts overall performance. The existing AVC technology entails high costs and often faces technical challenges, necessitating a solution that enhances efficiency in terms of operational costs, accuracy, and system maintenance. This research combines the You Only Look Once (YOLO) method for detecting vehicle axles, represented by tires, and Residual Network (ResNet) for classifying vehicle categories based on YOLO’s detection results. The dataset comprises 1,196 vehicle images across five distinct classes. The proposed system aims to improve accuracy, cost, and system maintenance efficiency. The findings indicate that the sy

Subjek

CLASSIFICATION
 

Katalog

Classification of Vehicle Classes at Toll Gates Using YOLOv9 and Resnet50 - Dalam bentuk pengganti sidang - Artikel Jurnal
 
13p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

ABDUL AZIZ FEBRIYANSAH
Perorangan
Gamma Kosala
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CII4E4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini