Multi-Label Classification of Al-Qur’an Verses Using Ensemble Method and BERT - Dalam bentuk pengganti sidang - Artikel Jurnal

FAUZAN NAUFAL RIZQI

Informasi Dasar

72 kali
25.04.472
000
Karya Ilmiah - Skripsi (S1) - Reference

Multi-label classification is a critical task in text analysis, particularly for complex datasets like Qur’an verses, which often encapsulate multiple thematic labels. This study investigates the use of ensemble methods by combining traditional machine learning models, such as Support Vector Machine (SVM) and Naïve Bayes, with the transformer-based BERT model. The research evaluates individual and ensemble performances under varying preprocessing conditions and uses Hamming Loss as the primary evaluation metric. SVM emerged as the most effective standalone model, achieving the lowest Hamming Loss of 0.0881, while the SVM and Naïve Bayes ensemble demonstrated competitive results with a Hamming Loss of 0.0891. Interestingly, minimal preprocessing outperformed extensive text transformations, underscoring the importance of preserving semantic richness in Qur’an verses analysis. The inclusion of BERT in ensembles, while promising, often underperformed due to its sensitivity to small datasets and contextual depe

Subjek

DATA SCIENCE
 

Katalog

Multi-Label Classification of Al-Qur’an Verses Using Ensemble Method and BERT - Dalam bentuk pengganti sidang - Artikel Jurnal
 
v, 9p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

FAUZAN NAUFAL RIZQI
Perorangan
Moch. Arif Bijaksana, Bunyamin
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini