Machine Learning Method for Carbon Stock Classification with Drone and GEE Data - Dalam bentuk buku karya ilmiah

MOHAMMAD DAFFA SETIAWAN

Informasi Dasar

73 kali
25.04.481
000
Karya Ilmiah - Skripsi (S1) - Reference

Accurate carbon stock classification is vital for supporting climate change mitigation efforts. Traditional methods are expensive and time-consuming, prompting the adoption of remote sensing techniques combined with machine learning for efficiency. This study evaluates the performance of XGBoost and Random Forest classifiers using drone and Google Earth Engine (GEE) imagery, with VGG16 applied as a feature extractor. Data collected from field plots at Telkom University, Bandung, Indonesia, were labeled into three classes: low, medium, and high carbon stock. The drone dataset used in this experiment consists of 2,114 images, while the GEE dataset comprises 2,526 images. This experiment results demonstrate that XGBoost with drone imagery achieves the highest accuracy of 90.79%, outperforming Random Forest and GEE-based models.

Subjek

DIGITAL IMAGE PROCESSING
 

Katalog

Machine Learning Method for Carbon Stock Classification with Drone and GEE Data - Dalam bentuk buku karya ilmiah
 
iv, 10p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MOHAMMAD DAFFA SETIAWAN
Perorangan
Erwin Budi Setiawan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini