Geospatial Sentiment Analysis Using Twitter Data on Natural Disasters in Indonesia with Support Vector Machine (SVM) Algorithm - Dalam bentuk pengganti sidang - Artikel Jurnal

MUHAMAD AGUNG NULHAKIM

Informasi Dasar

52 kali
25.04.503
000
Karya Ilmiah - Skripsi (S1) - Reference

Twitter serves as a crucial platform for expressing public sentiment during natural disasters, yet understanding and addressing these sentiments remains challenging due to data volume, imbalance, and regional disparities in response. This study aims to bridge this gap by conducting geospatial sentiment analysis on 988 labeled tweets related to the eruption of Mount Marapi, categorized into

Subjek

TUGAS AKHIR
 

Katalog

Geospatial Sentiment Analysis Using Twitter Data on Natural Disasters in Indonesia with Support Vector Machine (SVM) Algorithm - Dalam bentuk pengganti sidang - Artikel Jurnal
 
257p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MUHAMAD AGUNG NULHAKIM
Perorangan
Yuliant Sibaroni
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CII4E4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini