Personalized Korean Drama Series Recommender System Using Singular Value Decomposition - Dalam bentuk buku karya ilmiah

AISHA FARIZKA MAWLA

Informasi Dasar

59 kali
25.04.520
000
Karya Ilmiah - Skripsi (S1) - Reference

Korean drama series recommender systems aim to assist users in finding Korean drama series that match their preferences. Based on previous studies, there are several recommender systems on Korean drama series with various methods, but many of them are still limited to certain criteria, such as users’ favorite actors or genres, thus reducing the variety of recommendations. Therefore, we propose a recommender system for Korean drama series focusing on the MyDramaList dataset using the Singular Value Decomposition (SVD) method that utilizes other users’ ratings, thus enabling more in-depth identification of user preference patterns and items. The SVD method improves recommendation accuracy by extracting impor- tant features and overcoming sparsity issues, resulting in more relevant and personalized recommendations. Based on the test results, the SVD method performed best compared to the baseline K-Means and K-NN methods with an RMSE value of 1.443 and MAE of 0.900, reflecting a high level of prediction accuracy.

Subjek

RECOMMENDER SYSTEMS
 

Katalog

Personalized Korean Drama Series Recommender System Using Singular Value Decomposition - Dalam bentuk buku karya ilmiah
 
v, 8p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

AISHA FARIZKA MAWLA
Perorangan
Z. K. Abdurahman Baizal
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CII4E4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini