Data Augmentation using Multi-Turn Dialogue Prompting for Sentiment Analysis - Dalam bentuk buku karya ilmiah

SYIFA FATIMAH AZZAHRAH

Informasi Dasar

95 kali
25.04.522
000
Karya Ilmiah - Skripsi (S1) - Reference

Label imbalance and data scarcity in Natural Language Processing (NLP) pose significant challenges to the development of effective text classification models. One approach to solve label imbalance and data scarcity is data augmentation. In this research, we examine the impact of multi-turn dialogue prompting approach on a large pretrained language model based chatbot for data augmentation on sentiment analysis task. Model evaluation on original dataset before data augmentation was performed shows accuracy of 0.6 and an average F1 score of 0.57. This performance reflects non-uniformity of labels and poor performance on the original dataset. After data augmentation was performed, the model performance improved with an accuracy score of 0.99 and F1-score of 0.99. In addition, data augmentation with single-turn dialogue is also performed. The model performance improved with an accuracy score of 0.92 and F-1 Score of 0.91.  Although it can be able display satisfactory accuracy and F1 Score results, the model perfo

Subjek

DATA SCIENCE
 

Katalog

Data Augmentation using Multi-Turn Dialogue Prompting for Sentiment Analysis - Dalam bentuk buku karya ilmiah
 
11p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

SYIFA FATIMAH AZZAHRAH
Perorangan
Ade Romadhony
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini