Activity Monitoring and Detection of Rabbit Livestock Using Internet of Things (IoT) with Classification Tree (CT) Method - Dalam bentuk pengganti sidang - Artikel Jurnal

SEBASTIANUS EAGAN LILO

Informasi Dasar

88 kali
25.04.1317
000
Karya Ilmiah - Skripsi (S1) - Reference

Abstract— This research addresses the challenges of real time rabbit activity monitoring in farm management by implementing an IoT-based system with a Classification Tree (CT) method. The system uses an MPU6050 motion sensor integrated with a NodeMCU ESP32 microcontroller to collect acceleration and gyroscope data, which is transmitted to a MySQL database for analysis. The CT algorithm classifies rabbit activities into three categories: sleeping, eating, and moving. A balanced dataset of 1,768 samples ensured unbiased training, with the model achieving an accuracy of 72.13%. While effective, the complexity of the decision tree suggests a risk of overfitting, highlighting the need for optimization through additional features or alternative methods. This research demonstrates the potential of CT in IoT-based livestock monitoring, offering a practical approach to improve rabbit farm management. Future work could enhance accuracy and scalability for broader agricultural applications.

Subjek

IOT
 

Katalog

Activity Monitoring and Detection of Rabbit Livestock Using Internet of Things (IoT) with Classification Tree (CT) Method - Dalam bentuk pengganti sidang - Artikel Jurnal
 
v, 7p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

SEBASTIANUS EAGAN LILO
Perorangan
Muhammad Al Makky, Hilal Hudan Nuha
 

Penerbit

Universitas Telkom, S1 Teknologi Informasi
Bandung
2025

Koleksi

Kompetensi

  • CII4E4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini