Object Tracking in Surveillance System Using Extended Kalman Filter and ACF Detection - Dalam bentuk pengganti sidang - Artikel Jurnal

MARIA CHRISTINE

Informasi Dasar

48 kali
25.04.1325
000
Karya Ilmiah - Skripsi (S1) - Reference

This study explores an advanced approach to multi-object tracking in surveillance systems by employing the Extended Kalman Filter (EKF) and Aggregate Channel Features (ACF) detection. Our research addresses challenges inherent in real-time object tracking, such as occlusions and complex trajectories, with an EKF-based solution that offers enhanced tracking precision and continuity. By integrating ACF detection, we improve initial object detection speed and accuracy, thereby facilitating more reliable tracking initialization. We tested this approach on diverse datasets—each representing varied environmental conditions—to assess performance across metrics including Multiple Object Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP), precision, and recall. The results demonstrate that while the EKF-ACF framework achieves high spatial accuracy and precision, it also encounters limitations in minimizing missed detections in crowded scenes. This study underscores the utility of the EKF-ACF approach in surveillance applications, especially in scenarios demanding real-time, high-precision tracking of dynamic objects.

Subjek

Computer vision
 

Katalog

Object Tracking in Surveillance System Using Extended Kalman Filter and ACF Detection - Dalam bentuk pengganti sidang - Artikel Jurnal
 
9p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MARIA CHRISTINE
Perorangan
Hilal Hudan Nuha, Muhamad Irsan
 

Penerbit

Universitas Telkom, S1 Teknologi Informasi
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini