Deteksi Bunuh Diri Di Twitter Menggunakan Kombinasi CNN-BiGRU Dengan FastText Feature Expansion - Dalam bentuk pengganti sidang - Artikel Jurnal

MUHAMMAD WAHYU PRATAMA

Informasi Dasar

18 kali
25.04.6969
000
Karya Ilmiah - Skripsi (S1) - Reference

Abstract—Suicidal ideation detection on social media has become increasingly critical due to the rising prevalence of suicide-related posts. This study proposes a hybrid deep learning model to identify suicidal ideation in Indonesian-language tweets from the X platform. The model integrates Convolutional Neural Networks (CNN) for local pattern recognition, Bidirectional Gated Recurrent Units (BiGRU) for sequential context analysis, and FastText word embeddings to capture semantic nuances, especially in informal language. To further enhance performance, a Genetic Algorithm (GA) is employed for hyperparameter optimization and feature selection. The dataset comprises 50,307 annotated tweets, supplemented by 111,458 articles from the IndoNews corpus to enrich contextual understanding. Prepro- cessing steps include text cleaning, normalization, tokenization, and feature augmentation. The model was evaluated under five different experimental scenarios. Results show that the BiGRU- CNN + GA configuration in the fifth scenario achieved the highest accuracy of 86.69%, reflecting an 8.26% improvement over the baseline accuracy. These findings demonstrate the model’s effec- tiveness in detecting suicidal ideation and highlight the potential of hybrid deep learning approaches combined with evolutionary optimization in mental health-related social media analysis. The proposed approach offers a scalable solution for early detection efforts. Future work may involve real-time deployment and cross- platform validation to further enhance applicability.
Keywords—Suicide detection, CNN-BiGRU, FastText, Genetic Algorithm, X.
 

Subjek

analisis data
 

Katalog

Deteksi Bunuh Diri Di Twitter Menggunakan Kombinasi CNN-BiGRU Dengan FastText Feature Expansion - Dalam bentuk pengganti sidang - Artikel Jurnal
 
 
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

MUHAMMAD WAHYU PRATAMA
Perorangan
Erwin Budi Setiawan
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CAK4FAA4 - Tugas Akhir

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini