Pada penelitian ini dihitung kepadatan lalu lintas dan kategori jenis kendaraan yang melintas pada suatu ruas jalan di dalam video yang telah diambil sebelumnya secara offline. Video tersebut akan diekstraksi menjadi frame-frame yang kemudian dideteksi gerakan objeknya dengan menggunakan metode background subtraction, menghitung centroid, melakukan tracking centroid, dan thresholding selection. Pengujian sistem dilakukan ke 3(tiga) video uji yaitu video yang pada pagi hari, siang hari, dan sore hari. Video diambil dengan menggunakan webcam yang ditempatkan di atas ruas jalan yang akan diteliti.
Hasil yang diperoleh dari penelitian ini adalah sebuah sistem yang mampu menghitung kepadatan lalu lintas beserta kategori jenis kendaraan yang melintas pada suatu ruas jalan. Setelah dilakukan pengujian terhadap sistem yang telah dibuat, dapat diambil kesimpulan bahwa pemilihan intensitas cahaya, ukuran structuring element erosi, nilai threshold bwareaopen, ukuran structuring element dilasi, dan threshold luas label mempengaruhi tingkat akurasi sistem. Sistem bekerja secara optimal pada sore hari, ukuran structuring element erosi 2x1 piksel, nilai threshold bwareaopen 200, ukuran structuring element dilasi 16x8 piksel, dan nilai threshold luas label 5000 piksel dengan rata-rata akurasi sistem sebesar 94,307%, dengan akurasi penghitung kendaraan sebesar 99,091%, dan akurasi klasifikasi kendaraan sebesar 89,524%.