Rumah merupakan kebutuhan primer manusia sebagai tempat bernaung, berlindung, dan beristirahat. Sebagai kebutuhan primer, seluruh manusia berhak untuk mencari tempat tinggalnya masing-masing dengan keluarganya. Seiring berjalannya waktu, kebutuhan akan tempat tinggal semakin meningkat dan mempengaruhi harga jual rumah. Maka dilakukan clustering mengenai harga rumah dengan menggunakan metode K-Means dan Gaussian Mixture Model. Pada penelitian ini menggunakan data harga rumah di wilayah Kabupaten Bogor yang dihimpun dari website olx.co.id. Silhouette Score digunakan sebagai pembanding dari dua metode Clustering yang digunakan. Hasil dari penelitian ini, K-Means memiliki Silhouette Score sebesar 0.63516 lebih besar dari Gaussian Mixture Model yang memiliki Silhouette Score sebesar 0.62723 menjadikan kualitas cluster pada K-Means lebih baik daripada Gaussian Mixture Model pada penelitian ini.