Communication System Between Electric Vehicles and Electric Vehicles Charging Stations Based on AC Powerline Carrier - Capstone

REZA GUSTYAN SUKMARA

Informasi Dasar

77 kali
24.04.5928
621.31
Karya Ilmiah - Skripsi (S1) - Reference

In recent years, electric vehicles (EVs) have become increasingly prevalent, especially in advanced countries, owing to their efficiency and technological advancements, as well as a growing environmental consciousness. However, in Indonesia, fossil-fueled vehicles remain the dominant choice due to their affordability and entrenched use over decades. Nevertheless, a transition to EVs is emerging, propelled by both governmental incentives and societal willingness to embrace cleaner and more sustainable transportation options. The Government of Indonesia is actively promoting electric vehicles, with President Joko Widodo's administration setting ambitious targets for EV adoption. The transition from conventional vehicles to electric ones aligns with global efforts to achieve Net Zero Emissions (NZE) by 2060. Central to the operation of EVs is the Controller Area Network (CAN) Bus technology, which enables efficient communication between various vehicle components. This technology, originally developed by Bosch in 1989, has since evolved to streamline the interconnection of automotive devices, contributing to the modernization of in-vehicle networks. This means that through CAN-Bus, real-time monitoring and control of vehicle components are made possible. To further enhance the EV industry in Indonesia, Power Line Communication (PLC) technology is introduced. PLC leverages the existing electrical grid as a communication medium, offering advantages such as infrastructure compatibility. By combining CAN-Bus and PLC technologies, it becomes feasible to analyze and reprogram vehicle components, allowing for self-diagnosis and optimization. Several companies, including Continental Engineering Services (CES), Renault, Xingtera, and Star Charge, have developed gateway technologies to facilitate communication between CAN-Bus and charging stations. This research seeks to create a functional Electrical Vehicle Power Line Communication (EVPLC) system to bridge this communication gap and promote EV adoption in Indonesia. This document proposes the development of an EVPLC system in Indonesia to bridge the communication gap between EVs and charging stations, enhancing the reliability and efficiency of electric vehicles. It responds to the government's clean energy initiatives, aligns with global climate change efforts, and supports the rapid adoption of electric vehicles in Indonesia.

Subjek

TEKNIK ELEKTRO
 

Katalog

Communication System Between Electric Vehicles and Electric Vehicles Charging Stations Based on AC Powerline Carrier - Capstone
 
 
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

REZA GUSTYAN SUKMARA
Perorangan
Angga Rusdinar, Irwan Purnama
 

Penerbit

Universitas Telkom, S1 Teknik Elektro
Bandung
2024

Koleksi

Kompetensi

  • TUI4B4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini