Semantic Segmentation of Land Cover in Multisource Aerial Imagery using U-Net - Dalam bentuk buku karya ilmiah

SAYID RAYHAN MULACHELA

Informasi Dasar

60 kali
25.04.385
000
Karya Ilmiah - Skripsi (S1) - Reference

Accurate land cover segmentation in aerial imagery is vital for environmental monitoring and greenhouse gas (GHG) emissions assessment. This study applies the U-Net model for semantic segmentation of land cover types, including buildings, forests, water bodies, and roads, to analyze their impact on GHG emissions. Using the LandCover.ai dataset (1,200 images) and a supplementary dataset from Java, Indonesia (400 images), the research evaluates U-Net’s performance at the pixel level. The dataset was split into 70% training (840 images), 15% validation (180 images), and 15% testing (180 images). Metrics such as Intersection over Union (IoU) and Dice Coefficient were used for evaluation. The model achieved a mean IoU of 0.81 and a Dice Coefficient of 0.80 on the primary dataset, while performance declined with the Java dataset (mIoU 0.72, Dice 0.70), indicating generalization challenges. Data augmentation improved results to an mIoU of 0.82 and Dice 0.81. These findings highlight U-Net’s potential in remote sensi

Subjek

DEEP LEARNING
 

Katalog

Semantic Segmentation of Land Cover in Multisource Aerial Imagery using U-Net - Dalam bentuk buku karya ilmiah
 
iv, 9p.: il,; pdf file
 

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

SAYID RAYHAN MULACHELA
Perorangan
Erwin Budi Setiawan, Gamma Kosala
 

Penerbit

Universitas Telkom, S1 Informatika
Bandung
2025

Koleksi

Kompetensi

  • CCH3F3 - KECERDASAN BUATAN
  • CIG4E3 - PENGOLAHAN CITRA DIGITAL
  • CCH4D4 - TUGAS AKHIR

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini