Modelling of Significant Wave Height Time Series Prediction using CatBoost with a Case Study in Pacitan, Indonesia - Dalam bentuk buku karya ilmiah

OSA NASTIYAR MAULANI

Informasi Dasar

57 kali
25.04.1219
000
Karya Ilmiah - Skripsi (S1) - Reference

Forecasting wave height is essential for managing coastal activities, as it mitigates risks and losses in maritime transportation and informs coastal infrastructure design. Numerical wave modeling is frequently employed in forecasting wave heights. However, this methodology requires significant computational time and high grid resolution to obtain more accurate forecasts. Meanwhile, statistical approaches employing trend analysis of historical data for wave height prediction exhibit limitations in addressing extreme scenarios and characterising intricate nonlinear interactions. This work proposes using a machine learning model called CatBoost to predict wave height time series. We choose high-resolution wave data from nested wave simulations utilising the SWAN model at Pacitan Beach, East Java, Indonesia. We forecasted for intervals of 1, 5, 7, and 14 days, utilising diverse durations of wave data. Furthermore, the Catboost model's efficacy is evaluated compared to other boosting models, including Adaboost and XGboost. We conducted hyperparameter optimisation with GridSearch to get optimal performance with Catboost. The results demonstrated that the CatBoost model attained the maximum accuracy in all forecasting situations, with an RMSE of 0.0121 and an R2 value of 0.9986 over a 14-day prediction interval. Keywords—Wave Height Forecasting, CatBoost, AdaBoost, XGBoost, Hyperparameter Tuning

Subjek

DATA SCIENCE
 

Katalog

Modelling of Significant Wave Height Time Series Prediction using CatBoost with a Case Study in Pacitan, Indonesia - Dalam bentuk buku karya ilmiah
 
v, 13p.: il,; pdf file
English

Sirkulasi

Rp. 0
Rp. 0
Tidak

Pengarang

OSA NASTIYAR MAULANI
Perorangan
Didit Adytia
 

Penerbit

Universitas Telkom, S1 Data Sains
Bandung
2025

Koleksi

Kompetensi

 

Download / Flippingbook

 

Ulasan

Belum ada ulasan yang diberikan
anda harus sign-in untuk memberikan ulasan ke katalog ini