Churn prediction merupakan task dalam data mining yang berfungsi untuk memprediksi pelanggan yang berpotensi churn. Pada penelitian ini data yang dipakai dalam churn prediction bersifat imbalance dimana jumlah kelas mayor lebih banyak dibanding minor. Data yang digunakan pada penelitian ini menggunakan data pelanggan PT. TELKOM. Pada penelitian ini untuk menyelesaikan masalah imbalance class pada prediksi churn menggunakan metode SMOTE dan backpropagation CGF. Metode SMOTE digunakan untuk menangani kasus imbalance class dengan meningkatkan jumlah data minoritas dengan cara membangkitkan data sintetik sehingga kesenjangan proporsi kelas mayor dan minor berkurang. Selanjutnya backpropagation CGF digunakan untuk mengklasifikasikan kelas churn dan not churn. Pada penelitian Tugas Akhir ini performansi terbaik adalah F1-Measure sebesar 42.86% dan akurasi sebesar 94.73%.
Kata kunci: churn prediction, imbalance class, SMOTE, backpropagation, conjugate gradient Fletcher-reeves